The breadth of Lie poset algebras
نویسندگان
چکیده
The breadth of a Lie algebra $L$ is defined to be the maximal dimension image $ad_x=[x,-]:L\to L$, for $x\in L$. Here, we initiate an investigation into three families algebras by posets and provide combinatorial formulas members each family.
منابع مشابه
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملOn Poset Boolean Algebras
Let 〈P,≤〉 be a partially ordered set. We define the poset Boolean algebra of P , and denote it by F (P ). The set of generators of F (P ) is {xp : p ∈ P}, and the set of relations is {xp ·xq = xp : p ≤ q}. We say that a Boolean algebra B is well-generated, if B has a sublattice G such that G generates B and 〈G,≤G〉 is well-founded. A wellgenerated algebra is superatomic. Theorem 1 Let 〈P,≤〉 be a...
متن کاملSome properties of nilpotent Lie algebras
In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.
متن کاملThe structure of a pair of nilpotent Lie algebras
Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear & Multilinear Algebra
سال: 2022
ISSN: ['0308-1087', '1026-7573', '1563-5139']
DOI: https://doi.org/10.1080/03081087.2022.2111545